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Abstract 

The influence of a set of satellite oscillators on the response behavior of a 

master oscillator, to which the set is coupled, is of fundamental significance to 

structural acoustics and beyond. The focus is largely on the induced loss factor 

that the satellite oscillators generate in the impedance of the master oscillator. 

Much of the research work performed on behalf of this investigation employed 

basically sprung-masses for the satellite oscillators. A sprung-mass is a primitive 

type of satellite oscillator and, as such, limitations are imposed on the range of 

applicability of these research works. In this paper more elaborate satellite 

oscillators are introduced; and, especially, a wider range of coupling forms and 

strengths are investigated. A number of new insights are, thereby, obtained. In 

particular, this paper is to facilitate further studies of the relationships among the 

linear impedance analysis (LIA), the energy analysis (EA) and the statistical 

energy analysis (SEA). These studies are in progress and are to be reported 

subsequently. 
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I. Introduction 

In a companion paper, designated as Reference 1, the complex is specified in 

terms of the impedanceZ°0{co)of the isolated master oscillator, the impedance 

(ia>mr) of the (r)th isolated satellite "oscillator" and the coupling impedance 

(kr li(D); the coupling is between the master oscillator and the satellite oscillator. 

This complex is sketched in Fig.la [2-11]. In this complex, the satellite 

oscillators remain uncoupled to each other. The purpose in the present paper is 

to introduce a significant extension in scope. In this extension the isolated 

master oscillator remains the same. An isolated satellite oscillator, the (r) th, is 

specified by the impedance Zr(a>) that may consist of both a mass and a 

stiffness control term. The coupling of this satellite oscillator to the master 

oscillator is specified by the coupling impedance Zcr(co) and a gyroscopic 

coupling coefficient (Gr) [12,13]. The coupling impedance Zcr(co) consists of a 

mass and a stiffness control term. A complex of this type is sketched in Fig. lb. 

The mass and the stiffness control terms in this complex are related in the forms 

K =^0(l + /70)      ; {K0IM)=a>2
0, (la) 

kr   =kor(l + i?Jr)      ; (Krlmr)   =<>>?> (lb) 

Kr = Kcr C1 + i Vcr )    '» (kocr ' mr ) = <°cr > (lc) 
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where the pairs {M,K}, {mr,kr}, and {mr ,kcr} are, respectively, in reference 

to the master oscillator, to the (r)th satellite oscillator and to the coupling 

between them. The parameters (TJ0), (rfr\ and (rfcr) are the corresponding 

stiffness control loss factors, respectively. To complete the definition of the 

coupling, the mass (mcr)and the gyroscopic coefficient (Gr) need to be 

specified [12, 13]. These are specified through the coupling parameters which 

are defined in the normalized forms 

™Cr = (™cr l™r) ; gr = lGr f(0)o mr)] , (Id) 

respectively. With the assistance of Fig. lb, the linear equations of motion of the 

master oscillator in situ and of a typical satellite oscillator in situ are derived 

R 

Zl{ß)V0{co)^2cr{(D) V0(co) + [Z-(®) - Gr)Vr(ü>) = Pe(a>), (2a) 
l 

[Zr (o))+Zcr(o))]Vr(o)) + [Z;r(<D)+Gr ]V0(a>) = 0 , (2b) 

respectively, where V0(co) and Vr (co)are the responses of the mass (M) of the 

master oscillator and the mass (mr)of the (r)th satellite oscillator, respectively, 

(R) is the number of satellite oscillators that are coupled to the master oscillator, 

Pe((o) is the drive that is applied externally to the master oscillator; the satellite 

oscillators are not driven externally, Z0
0(co) is the impedance of the master 

oscillator in isolation 
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Z°0{a>) = (^M)[l-O0-2(1+//70)];       y = (»/fife), (3«) 

Zr(a>) is the impedance of the (r) th satellite oscillator in isolation 

Zr(co) = (icomr)[\-(zr)
2 (1 + irjr )];   xr = (cor lco0);   zr = (xr ly),      (3b) 

Zcr(co) is the impedance of the coupling between the master oscillator and the 

(r) th satellite oscillator 

Zcr(co) = (icomr )[mcr -(zcrf (l+i?jcr )]; 

™cr = (mcr /mr)>    xcr = (°>cr iG)o)'^   zcr = (xcr >» > (3c) 

Z~r(co) is an impedance that is related to the coupling impedanceZcr(a>); 

namely 

Zcr (®) = 0' ® «r ) l™cr + (zcr f 0 + »7cr )] » (3fi0 

and (mC7.), (xcr), (7cr), and (G,.)are defined in Eqs. (1) and (2) [12]. The 

superscript (o) is reserved to designate quantities that pertain either to the master 

oscillator in isolation or to satellite oscillators under certain and definitive 

impositions. Thus, for example, from Eqs. (2a) and (3a), one may state 

Z0»F0» = Pe(a), (4) 

where V" (CD) is the response of the master oscillator in isolation. By a 

straightforward algebraic manipulation of Eq. (2) one derives 

Z0(<D) V0(co) = Pe(co); Vr(co) = Br(co)V0(oo), (5) 
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where 

R 

Z0(a>) = Z°0(co) + ^[{Zr(a>)Zcr(a>)}HQcr)
2][Zr(co)+Zcr(a>)Tl , (6a) 

l 

Br(a>) = [Z-(©) + Gr ][Zr(co) + Zcr((o)Tl, (6b) 

(Qcr)
2=4mcrkcr+(Gr)

2, (6c) 

and the quantities Z°0(a>\ Zr((o\ Zcr(co)and Z~ (ö>)are stated explicitly in Eq. 

(3). Indeed, from Eqs. (1), (3) and (6) one obtains 

Z0(o>) = Z0(y) = (icoM^l-iy^^l-Siy^+il^ + ^iy)]}] , (la) 

Br((D) = -[mcr + (zcrf(\ +i?jcr) - i(gr ly)\. 

[(1 + mcr)-(zrr)
2 (\+i7irr)Yl , (lb) 

where 

(xrrf (1 + irirr) = (xrf (1 + itjcr) + (xcrf (l+iTjcr), (8a) 

R 

[s(y) - iiis(y)] = (yf £ {fhr {[1 - (zrf (l + iVr)]. 
l 

\ßcr ~ kerf (1 + *"%r )] ~ (&r ^)2} • 

[(1 + fhcr ) - (Zrrf (1 + iTJ„. )Tl} (86) 
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and, again 

Zrr = (xrr I J>) '■>        zr = (xr I jO '>        zcr = (xcr > j) "> 

tier lyf = *™cr kerf (* + irlcr) + (gr '' yf '>       %cr = \Qcr K&o mr)l (8c) 

One notes that the compound coupling parameter (qcr) is a functional of the 

mass and gyroscopic coupling parameters (mcr)and (gr), respectively. These 

coupling parameters are defined in Eq. (Id). One also notes, with satisfaction, 

that the dependence of the terms in the sum on the gyroscopic coupling 

parameter (gr) is quadratic so that the sign assigned to the gyroscopic coefficient 

(Gr) plays no role in the influence of the individual satellite oscillators on the 

impedance of the master oscillator. The gyroscopic coupling is in quadrature to 

both, the mass and the stiffness control couplings. 

Examination of Eqs. (7) and (8) shows that the normalized impedance that the 

satellite oscillators collectively induce on the master oscillator may be cast in 

term of the two-vector {S(y), r)s(y)} (R), which is a function of (R), as 

indicated. The evaluation of this two-vector, however, is predicated on explicitly 

specifying the two-vector {xrr, rjrr}(R), its two supplemental components 

{xr,jjr}(R) and {xcr, rjcr}(R)and finally assigning the compound coupling 

(qcr). The two-vector {xrr, rjrr} {R)'v& designed, for the sake of convenience, to 

stay fixed with respect to variations in the index (r). In this design, the springs, 

that are placed on either side of the mass of a satellite oscillator, are set to be 



Page 8 

similar.   With this design, Eq. (8b) is evaluated.   In this paper the induced 

reactive factor S(y) is not considered, here the prime interest is focused on the 

induced loss factor 7]s(y).   The induced loss factor rjs(y) is examined for a 

variety of coupling forms and coupling strengths as well as for a number of 

values of the modal overlap parameters (br) and (bcr)associated with the loss 

factors 7,. and tjcr, respectively [1]. By and large, (2y)is set equal to (6cr)and 

they are equated to (b); b = br = bcr.   The simplifying equalities are imposed 

without considerable loss in generality. Using Eq. (8b), the exact evaluations of 

r?s(y) are executed for three values of (b); b = (0.1), (2.0) and (10).  In these 

evaluations one finds that rjs(y) is a function (b).   On the other hand, the first 

order approximation of rjs(y), designated by Tjf(y), that is derived from the 

replacement of the summation in Eq. (8b) by an integration, is found to be 

independent of (b).    The evaluations are graphically displayed; three exact 

evaluations for the three values of (b) and the corresponding first order 

approximation of Tjs(y) are superimposed in each of the displays.   The com- 

parison between these four evaluations can thus be made at a glance, assisting 

greatly in the interpretation of the data that is computed and displayed.   In the 

frequency range of concern, when (b) is small compared with unity the levels in 

the exact evaluations of jjs(y)undulate, as a function of (y).   (The frequency 

range of concern spans the resonance frequencies of the satellite oscillators.) 

The excursions in the undulations increase with decrease in (b).     It is argued 
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that the first order approximation constitutes the mean-value averaging of the 

undulated levels of rjs(y) when (b) is small compared with unity and, again, this 

mean-value curve is independent of (b) [1, 14]. As (b) approaches and increases 

above unity the undulations in the exact levels of rjs{y) are suppressed and the 

phenomenon of erosion commences and increases. In the frequency range of 

concern, for these increasing values of (b), erosions are manifested by 

progressive decreases of the levels, in the exact evaluations of rjs(y), from the 

levels of the corresponding first order approximation [2, 3]. 
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II.      Resonance Frequency Distribution of and Assignment of 

Individual Loss Factors to the Satellite Oscillators 

It has been argued that the coupling between two oscillators may cause a shift 

in the resonance frequency that each has in isolation. Indeed, it was suggested 

that this shift may be used to determine the "coupling strength" [15, 16]. One 

may then question as to what exactly are these shifts and are they significant. 

The shifts, as such, and the implications that they may harbor are not addressed 

in the present paper; here these shifts are overridden by design. The design 

intends to derive a suitable resonance frequency distribution and a proper 

assignment of individual loss factors to the satellite oscillators. The design is 

expressed, then, in terms of the two-vector {xrr, rjrr}(R), where {xrr)is the 

normalized resonance frequency and (7rr)is the loss factor associated with the 

(r)th satellite oscillator. Examination of Eqs. (7) and (8) shows that the nor- 

malized resonance frequencies of the satellite oscillators, in situ, are ascertained 

by satisfying the equality 

(1 + mc)(yf = (Xfr)
2;    (1 + mc) = (zrrf;       (xrr)

2 = (xrf + (xcr)
2. (9a) 

As in Reference 1, here too (xrr)is assigned a priori with equal numbers of 

resonance frequencies on either side of the resonance frequency(a>0)of the 
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master oscillator and the distribution is aligned in ascending order; namely 

xrr<xqq; q = (r + l); \<r<(R-l). (9b) 

A scheme that simultaneously satisfies Eqs. (9a) and (9b) and the mid-point just 

imposed, demands a supplemental condition of design between the two spring 

stiffnesses that support the mass of a satellite oscillator, [cf. Fig lb.] This 

condition of design requires that 

(xrr)
2 = (1 + mcr)   for r=(l/2), (9c) 

where, in Eq. (9c), (F) may be allowed a continuous connotation [1]. Consulting 

Reference 1 and using Eq. (9a), one may express the loss factors that are 

associated with the (r) th satellite oscillator in the forms 

jjr = [br/2(xr)
2] d(xrf /dr];       rjcr = [bcr I2(xcrf] [d(xcrf /dr]; 

Vrr = KO2]-1 {(*r)2 Vr + i^crf Vcr >> (10) 

where (br) and (frcr)are the modal overlap parameters assigned to the back 

spring and the fore spring. These two springs support the mass (mr). [cf. Fig. 

lb.] For the sake of simplicity and computational advantage, the stiffness on 

either side of the mass of a satellite oscillator are assumed to be "similar" in the 

sense 

(xr) = (ar)
ll2{x°r);   (xcr) = (aj12 (x°r);  (xn) = (ar + acr)

ll2(x°r),      (11) 

where (ar) and (acr)are dubbed the spring factors.    In keeping with the 

definitions of (fhcr) and (gr), as the mass coupling parameter and the gyroscopic 
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coupling parameter, the spring factor (acr) may be designated the stifmess 

coupling parameter. It is conducive to specify (x?) in a form that is compatible 

with one of the forms introduced in Reference 1; namely 

xr°=[l+{l-2F}H£)r1/2, (12) 

where 

7 = r(R + iyl;   R = R(R + \)-1;   y(R) = [y/(2R)];   y<\, (13) 

and (r) may be discrete;  1 < r < R, or continuous (s) < r < (R + s) with e < 1. 

It should be appreciated, however, that although in this paper Eq. (12) is cast in 

stone, other forms for (x^)may be readily introduced and similarly manipulated. 

Also and similarly, as introduced in Reference 1, the normalized mass (mr)of 

the (r)th satellite oscillator is assumed to be independent of (r) and to be of the 

form 

R 
mr = (mrIM) = (Ms IM)(Ryl;   Ms = £K). (14) 

l 

With the intended exceptions of the last section in this paper it is convenient, 

without a great loss in generality, to assume that the spring factors 

(ar) and (acr), the coupling parameters (gr) and (mcr) and the modal overlap 

parameters (br) and (bcr) are to be independent of (r); namely 

ar = a;   acr=ac;   gr = g;   mcr = mc;   br = bcr = b, (15) 

and it is observed, as already intimated, that the modal overlap parameters {br) 
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and (bcr) are set equal to (b). [cf. Appendix A.] From Eqs. (9c), (10), (11) and 

(12), one then finds 

(a + ac) = (l + mc), (9d) 

TJr = rjcr = Irr = Tj(r);     Tj(F) = (b Itc) [y(R)(x°r)
2 ] , (16) 

where 

b=[(xb)(R+l)-1]. (17) 

Under this imposition, the two-vector {(xrr), (rjrr)} (R) assumes the simple form 

{(*„.), (?jrr)} (R) = {(l+mc)
1/2(xr°), 7(F)}, (18a) 

and, if further, the mass coupling parameter (mc) is negligible; (mc) « 1, then 

iK)> (ri)} (V = {«), W)}, (18Ö) 

where the superscript (o) in (xrr) and (rjrr)recognizes that (x°r) and(j]°r) are 

restricted to specific impositions, [cf. Eq. (4).] With R=27 and mc = 0, Eq. 

(18) is evaluated and depicted in Fig. 2a, as a function of (F); Fig. 2a. 1 depicts 

(xrr) and Fig. 2a.2 depicts (j]rr). In Fig. 2a the modal overlap parameter (b) is 

increased from (0.1) to (2.0) and then onto (10). To these changes(rjrr)increases 

by a factor of (20) and then by a factor of (10 ), whereas, to these changes in 

(b), (xrr)remains intact. With R = 7andmc=0, Eq. (18) is evaluated and 

depicted, in the format of Fig. 2a, in Fig. 2b. On the other hand, with R = 27, 

but with mc =0.75, where, for example, in addition a = 1.75,   ac = gc - 0, Eq. 
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(18) is evaluated and depicted, in the format of Fig. 2a, in Fig. 2c. It is noted that 

for a continuous r, except for obvious end conditions, Figs. 2a. 1 and 2b. 1 are 

identical. However, Figs. 2a.2 and 2b.2 are not identical. On the other hand, it is 

noted that Figs. 2a.2 and 2c.2 are identical, however, Figs. 2a. 1 and 2c. 1 are not 

identical. The commonalties and disparities among Figs. 2a, 2b and 2c, are as 

expected. [It is also noted, in passing, that (xrr) and {rjrr), stated in Eq. (18) are 

independent of the gyroscopic coupling parameter (gr).] 

It remains then to use the two-vector stated in Eq. (18) to evaluate the induced 

loss factor Tjs(y). Indeed, using Eq. (18) in Eq. (8b), one derives the more 

explicit expression for rjs(y) in the form 

f R 

%00 = -(yf Im   J>r{[\-a{z°rf {l+ifj(r)}] [mc-ac(z°rf O + 'W)}] 

.ox2 TTM    r~i..\2 -4mcac(z?y{l+iTj(r)}-(g/yy}. 

o^l r-Mrl [(l+mc)-(ör+ac)(zr
0)z{l+/77(F)}] •;      z°={x°ly) (8*0 

where (wc), (g), (y), (a), (ac), (*?), (mr)and 77(F) are stated in Eqs. (Id), (3a), 

(11), (12), (14) and (16), respectively. The computations of 7js(y) are largely 

carried out assigning the standard values 

v-l (Ms/M) = lO~l,b = (0.1) andR = 27, (19) 
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where (Ms) is stated in Eq. (14), (b) is the modal overlap parameter and (R) is 

the number of satellite oscillators in the set. When these standard assignments 

are deviated from, specific mentions are to be rendered, notwithstanding that, at 

times, the employment of these standard values may be reiterated. 
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III.     Revisiting the Results Presented in Reference 1 

It may be useful, at this stage, to reproduce results that are depicted in 

Reference 1. To this end, the following impositions are rendered 

a=>0;   ac=l;  mcr=0;   gr=0. (20) 

These impositions render the complex commensurate with that defined in 

Reference 1 and sketched in Fig. la. [cf. Fig. lb.] For these impositions, Eqs. 

(16) and (18b) and Fig. 2a are validated. One finds that Figs. 2a. 1 and 2a.2 are 

akin to Figs. 3a and 7a of Reference 1, respectively. In addition to evaluating the 

two-vector specified in Eqs. (16) and (18b), the corresponding induced loss 

factor 7j°(y) is evaluated using Eq. (8d) and the assignment stated in Eqs. (19) 

and (20).   Again, the superscript (o) in JJS (y) indicates that the evaluation is 

restricted to specific impositions. This evaluation of rfs (^)is depicted in Fig. 3a. 

The modal overlap parameter (b) is increased from the value of (0.1) to (2.0) and 

then onto (10) and rfs{y) is evaluated and depicted in Figs. 3b and 3c, 

respectively. The identity of Figs. 3a and 3b with Figs. 5a and 6a of Reference 1, 

respectively, is clear. In particular, the undulations that exist in Fig. 3a and the 

suppression of these undulations in Fig. 3b corresponds to a phenomenon that is 

discussed in detail in Reference 1. Figure 3c does not have a counter part in 

Reference 1.  This figure is included in order to bring in another phenomenon; 
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the phenomenon of erosion that may beset the induced loss factor TJS (y) [1-3]. It 

transpires that mean-value averaging of levels of TJS (y), for modal overlap 

parameters (b) that are small compared with unity, coincide and are thus 

independent of (b) [1, 14].   This coincidence is illustrated in Fig. 3d.   In this 

figure j]s (y) is depicted for three small values of the modal overlap parameter 

(b); b = (0.01), (0.1) and (0.3). The coincident curve representing the mean- 

values of rjs{y) for all small values of (b); b « (1.0), clearly emerges in Fig. 

3d. For reasons that are explained subsequently, the curve coincident with these 

mean-values is dubbed (FOA). An erosion is here a phrase to describe deviations 

of the levels of fjs(y) from these mean-values when (b) approaches and 

increases beyond the value of unity.   An erosion is then a dependence of the 

levels of TJS (y) on (b) as this parameter approaches and exceeds unity. To bring 

into focus the existence and nature of erosion for rjs (y), Figs. 3a, 3b and 3c are 

overlaid in Fig. 3e. Also, superimposed on Fig. 3e is the curve just designated 

(FOA). The presence of erosion, as just described, is thus revealed in Fig. 3e. It 

is apparent that erosions commence at the edges of the normalized frequency 

range; the higher the value of the modal overlap parameter (b) above unity, the 

more the inroad from the edges into the frequency range. (The frequency range 

of reference is that spanning the resonance frequency distribution of the satellite 

oscillators.) Figure 3e, however, shows that there is hardly any erosion at and in 
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the vicinity of y=\. One is reminded that this is precisely the normalized 

frequency region where rjs(y)potentially plays the more significant role in 

controlling the response behavior of the master oscillator. To cause an erosion at 

and    in    the    vicinity    of    y-l,    the    normalized    overlap    parameter 

(b); b = [(nb)(R+\y1]t needs approach and exceeds unity [1-3]. This extreme 

case of erosion is illustrated in Fig. 3f.   In this figure the only change, in 

parameters that specify the complex assigned to Fig. 3e, is the number (R) of 

satellite oscillators.  The number (R) is (7) instead of (27), so that for b = 10, 

(b) comfortably exceeds unity in Fig. 3f. After this brief digression, it is time to 

return to consideration of Reference 1 and beyond. 

The limited scope of Reference 1 curtails the modeling and the analysis of the 

complex there considered, notwithstanding that complexes employed to date are 

largely subjected to similar limitations [2-11]. A poignant question arises: what 

is fresh about the complex defined herein as compared with the complex defined 

in Reference 1? Whereas in Reference 1 a satellite oscillator in isolation is 

characterized by a mere mass control term, here it is characterized by the 

oscillator impedance Zr{co), as stated in Eq. (3b). This oscillator, in addition to 

the mass control term, may also possess a stiffness control term. Moreover, the 

coupling impedance Zcr{co), as stated in Eq. (3c), may, in addition to the 

stiffness control term, possess also a mass control term. Finally, the coupling 

between a satellite oscillator and a master oscillator may be allowed to include a 
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gyroscopic control term [12, 13]. Obviously, the complex sketched in Fig. lb 

and formulated in Eqs. (5) - (8) is more versatile than that in Reference 1, as 

sketched in Fig. la. It may be useful, therefore, to investigate a few of the 

attributes of this versatility even under the similarity conditions imposed in Eq. 

(11) and the simplifying assumptions proposed in Eqs. (14) and (15). 
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IV.     Various Coupling Forms and Coupling Strengths 

It is of interest to evaluate the induced loss factor rjs(y), as a function (y), for 

a variety of selected coupling forms and coupling strengths. The coupling forms 

are defined according to whether the coupling is dominated by either a stiffness 

coupling, a gyroscopic coupling, a mass coupling or combinations of these 

coupling types. The coupling strengths of these forms are determined by the 

values of the coupling parameters; the stifmess coupling parameter (ac), the 

gyroscopic coupling parameter (g); gr=g, and the mass coupling parameter 

(mc). The values of these coupling parameters may be categorized from 

weaker-coupling, to moderate-coupling onto stronger-coupling in the range of 

values of 0.03, 0.15 and 0.75, respectively. In this categorization, the coupling of 

the satellite oscillators to the master oscillator, defined in Reference 1, is of 

stiffness control coupling form; i.e., ac*0, g = mc = 0, and of (very) strong 

coupling strength; namely, ac = 1.0 [a=0.0.]. Such a coupling form and a 

coupling strength define satellite oscillators commonly designated sprung-masses 

[1-11]. The new evaluations in this paper are exhibited in Figs. 4-7. Of 

significance are not only the variations in the coupling forms and in the coupling 

strengths, but, also, the influence that changes in the modal overlap parameters 

have on the nature of the induced loss factor rjs(y). A first set of figures is 

evaluated with b = (0.1), a second with b=(2.0) and a third with b=(10). A 

major feature, common to all evaluations, is that the undulations in the first set, 

for which 6=(0.1), is suppressed in the second and in the third, for which 
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b=(2.0) and b=(10), respectively [1]. Figures 4-7 are cast in the format of Fig. 

3e; corresponding figures in the three sets are overlaid so that the undulations in 

the first set and their suppression in the second and third are observed at a glance. 

Another major feature, common to all evaluations, is that the erosions, discussed 

briefly in Section III with respect to rfs(y) and depicted in Figs. 3e and 3f, thread 

all figures. It is noted that when b =[(nb)(R+l)~l] approaches and exceeds 

unity, erosions occur even at and in the vicinity of y=l. These extreme 

erosions, however, in addition to the dependence on (b), seem to carry a slight 

dependence on the coupling forms and strengths. These dependencies, which are 

more clearly apparent when the coupling is weak; e.g., in Figs. 6b and 7d, are, at 

this stage, merely noted. Supplementally, some of the emerging details in Figs. 

4-7 may be summarized as follows: 

1. The format of Fig. 3e is reproduced in Fig. 4a, except that the stiffness 

coupling parameter is reduced from ac =1.0 to ac = 0.75; i.e., from very strong 

to strong stiffness control coupling . This change decreases the levels in Fig. 4a 

as compared with those in Fig. 3e. The decrease is, however, slight. A more 

drastic decrease in levels occurs in Fig. 4b as compared with Fig. 3e. In Fig. 4b 

the stiffness coupling parameter is ac= 0.15, whereas in Fig. 3e ac= 1.0. This 

decrease in levels is largely related to the difference in the coupling strengths. In 

Fig. 4b the coupling strength is moderate. 
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2. The format of Figs. 4a and 4b is reproduced in Figs. 5a and 5b, respectively, 

except that the stiffness coupling form is changed to a gyroscopic coupling form; 

namely, ac = mc=0, g * 0. In Fig. 5a the coupling is strong; g=0.75, and in 

Fig. 5b the coupling is moderate; g=0.15. The similarity between Figs. 4 and 5 

is obvious. Also obvious is the slope in the curves in Fig. 5. This slope is 

characteristic of the gyroscopic coupling. The gyroscopic coupling enters in the 

form of (g/y) and not merely in the form of (g). [cf. Eq. (8).] 

3. The format of Figs. 4a and 4b is reproduced in Figs. 6a and 6b, respectively, 

except that the stiffness coupling form is changed to a mass coupling form; 

namely, ac=g=0, mc* 0. In Fig. 6a the coupling is moderate; mc=0.l5, and 

in Fig. 6b the coupling is weak; mc =0.03. The similarity between Figs. 4 and 6 

is obvious although the levels in the former are higher than in the latter, largely 

in consequence of the disparities in the coupling strengths. 

4. Finally, the format of Fig. 4a is reproduced in Fig. 7, except that the stiffness 

coupling form is modified to accommodate, in addition, another form of 

coupling. In Fig. 7a the additional coupling form is mass control; namely: 

ac - mc=0.75[a=0.1.], g=0, which is a very strong coupling strength. In 

Figs. 7b, 7c and 7d, the additional coupling is gyroscopic control; namely, in Fig. 

7b: ac = 0.53 [a=0.43.], g=0.54, mc = 0, which is a strong coupling strength, 

in Fig. 7c: ac = 0.10 [a=0.9.], g = 0.11, mc = 0, which is a moderate coupling 

strength and finally, in Fig. 7d:   ac = 0.02[a=0.98.], g = 0.022, m=0, which 
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is commensurate with a weak coupling strength. The levels in these figures are 

set largely by the coupling strengths; the higher the coupling strength the higher 

the levels. 

In the normalized frequency range of concern, the levels in Figs. 3-7 that 

pertain to modal overlap parameters (b) that are small compared with unity; e.g., 

b - (0.1), undulate. On the other hand, again in the normalized frequency range 

of concern, the curves in Figs. 3-7 that pertain to modal overlap parameters that 

exceed unity; e.g., &=(2.0) and (10), are reasonably smooth. A few questions 

arise: Can these features be estimated by replacing the summation in Eq. (8d) by 

an integration and if so, can this integral be performed with ease? Can the result 

of this performance interpret the response behavior of the master oscillator in 

terms of the various parameters that define the complex? And last, but by no 

means least, what about the undulations, do they feature in the result of this 

integration? 
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V.      Replacing a Summation by an Integration 

The index (r) is given a continuous connotation and the summation in Eq. 

(8b) is replaced by integration. Under a condition that allows this replacement, 

Eq. (8b) assumes the form [ 1 ] 

iS(y) - iris(y)] = (yf P0***'] dzr{7)[f{r)ß{7)]. 
Jzr(s) 

{[1 - {z(7)f (X+irKr))] Wc{r)-{ze(r)}2 (1 + i?jc(7))] - [qc{7)lyf } . 

m+me(r)] ~ [{zr(r)}2 (l+i?jr(F))]}-1 (21) 

where 

\äc<r)lyf = 4mc(r) {zc(7)}2 (1+iVcir)) +[(g(r)/yf; 

m(r)=v(7)(R+irl; f(r)dzr(F) = dr ; {zr(F)}2 = (z(F)}2 + {zc{7)}2; 

6 = s(R+iyl ;   (R + e) = (R+eXR+Vf1 (22) 

If r]r{7) is small enough so that the vanishing of the real part of the denominator 

in the integral in Eq. (20) predominates the values of the integral, the integral 

yields 
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{^)-^(j)}=(^/2)/[/(FJMF0)][l+mc(F0)r
(1/2)[{K(^)-{^(^)}2]- 

[{<r0)f ?](r0)-{zc(r0)}2 /7c(rJ]+4mc(F){zc(F0)}2 rjc(r0)} 

-i[mc(F0)-{zc(r0)}2f + [{z(F0)zc(F0)}2ij(F0)rje(roy]+\jqe(r0)/yf }] , (23) 

where 

(s) <r0<(R +e); 

{z„(F0)}2 = (l+mcr) = {z(F0)}2 + (zc(F0)}2: 

{zr(r0)f tj. (r0)={z(r0)}2 Tj(r0) + {zc(r0)f ?jc(r0) . (24) 

Equation (24) defines the specific value of (r0)and it is recognized that (r0)is a 

function of (y) and vice versa. Adopting the impositions and the simplifications 

that are conducted in Eqs. (16) and (18), one may derive from Eqs. (23) and (24) 

the result 

7Js(y)=D[C + 0{j?(<y)}2];   T/8(y)=>m(y) = DC, (25) 

with 

D = {7tl2y{R)][Ms /(MR)] [(l+m,)]"1, (26a) 

C = [(mc+ac)
2+(gfy)2}, (26b) 

0 = [(l+mc-ac)ac], (26c) 
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and where 

f(?0)=[(a+ ac )(1/2) y(R){yf T"1;   P%)={MS I MR), (26d) 

rj(y) = W0) = (bl7T)[y{R){y)2 ];   77^) = rjc(r0) = ^ (F0), (26e) 

(l+mc) = (a+ac) ;        [l+(r/2)F<1/2> < j; < [l-(r/2)]-(1/2> . (26f) 

The underlying condition of the validity on Eq. (25) is detailed in Reference 1. 

This condition holds even though the coupling forms are elaborated to include 

not only a weaker stiffness coupling, but also mass and gyroscopic coupling 

forms.    Moreover, the coupling parameters may define various degrees of 

coupling strengths.   Strictly, the validity of Eq. (25) demands the equality of 

%0)to the primary term rjj(y).  This equality designates rjj(y) the first order 

approximation to ?]s(y).    The term 0{^(>;)}2is of the order of the higher 

approximations to the integral, notwithstanding that situations exist in which (O) 

is identically zero; e.g., when the satellite oscillators are sprung-masses for which 

ac = 1,    g = fnc=0.    [cf. Eq. (20).]   In these situations the equality of the 

integral evaluation of rjs{y) to rjj(y) need not be specifically invoked. (More on 

this subject when in a subsequent paper higher order of approximations, than the 

first, are to be evaluated.) Clearly and significantly, the primary term 7jj(y) and, 

therefore, the first order approximation of 7]s(y) is independent of the modal 

overlap parameter (b). Without much-a-do, in this paper the first order approx- 
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imation only is implemented and considered.   In this approximation the first 

order approximation to rjs(y) is the primary term rjj(y). 

Equation (25) reveals the parametric composition of the first order 

approximation to the induced loss factor rjs(y) => 7jj(y). Again, one is remind- 

ed that the induced loss factor r)s (y) describes the influence of the coupled 

satellite oscillators on the loss factor in the impedance of the master oscillator. 

In the absence of couplings this loss factor is (TJ0) ; in the presence of couplings it 

is \rj0 +J]s(y)]. Since the satellite oscillators add merely passive elements to the 

complex, rjs(y) is invariably positive. Equation (25) confirms this statement and 

exposes the proportionality of rjj(y)to(D). Therefore, ?jj(y) is directly proport- 

ional to the mass ratio (Ms/M); it is estimated that for a reasonable complex 

with (Ms IM) equal to about a tenth, (D) is of the order of unity, [cf. Eq. (19).] 

The quadratic dependence of the primary term ?]/(y) of Tjs(y), in terms of (C), 

which entertain the term-components (mc +ac) and (g/y) , is of significance. 

Again, it is emphasized that the primary term rjj (y) is the true first order 

approximation to fjs(y); in this context the term DO{tj(y)}2 is superfluous. In 

any case, Eq. (26) indicates that this term in rjs(y) is rarely dominant even when 

the loss factor TJ( V) of a typical satellite oscillator exceeds any of the coupling 

parameters; fhc, ac, (g/y) < J](y), notwithstanding that in the absence of any 

couplings rjs(y), as stated in Eq. (25), is negligible on account of both, C=0 

and O = 0. On the other hand when couplings do exist, in both, the first order 

approximation and the exact evaluations of rjs{y), the levels are certainly not 
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negligible, even if the couplings are weak.    [Note that (?j0)of the order of 

(10~4)is not unreasonable [12].] 

As already discussed and demonstrated in Figs. 3-7 the curves for a modal 

overlap parameter (b) that is small compared with unity; b « 1, possess levels 

that are undulated. The excursions in the undulations are the more pronounced 

the smaller is the value of (b) [11]. [cf. Fig. 3d.] As (b) increases, approaching 

and exceeding unity, the undulations, again true to form, are suppressed. As 

already intimated in Section III, increasing (b) beyond unity brings in the 

phenomenon of erosion which worsens as the modal overlap parameter (b) 

reaches higher and higher above unity. A remarkable property of the first order 

approximation (FOA) of rjs(y) [^(y)] emerges when this quantity is 

superimposed on the respective Figs. 4-7. [cf. Figs. 3d, 3e and 3f.] It is now 

observed, in these figures, that the mean-value averaging of the undulations of 

the exact levels of rjs(y), when (b) is small compared with unity; b«\, 

converges onto the first order approximation (FOA) of rjs(y) [1, 14]. Since, as 

already observed, the first order approximation; namely, rjj{y), is independent 

of (b) this convergence is without erosion and, of course, remains so. [cf. Figs. 

3d and 3e.] The independence of 7jj(y) of (b) has been stretched by some to 

conclude that (6) may be rendered, a priori, equal to zero. Neglecting to mention 

in this rendering that mean-value averaged levels are substituted for highly 

undulated levels, is not a viable scientific procedure, unless ignorance is bliss 

[11]. On the other hand, when (b) approaches and exceeds unity, the exact 

levels become free of undulations, but these levels erode with further increases of 
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(b). The erosion in the exact levels, when (b) increases beyond unity, 

commences and progresses from the levels of the first order approximations. To 

account for this progressive dependence on (b), higher order approximations are 

clearly required. What is doubtful is whether higher and higher order 

approximations can account for the undulations when (b) needs to remain small 

compared with unity. To account for the undulations an entirely different 

approximation procedure is thus called for. In this paper devising such an 

approximation procedure is not attempted. 
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VI.  A Typical Member of an Ensemble of Complexes Supporting 

Various Parametric Combinations 

In the preceding evaluations the distribution of resonance frequencies 

(xrr) and the assigned loss factors {rjrr) for the satellite oscillators are sequen- 

tial functions of the normalized index (7). These two quantities, exemplified in 

Figs. 2a. 1, 2b. 1 and 2c. 1 and in Figs. 2a.2, 2b.2 and 2c.2, respectively, may be 

smoothed out by extrapolation and interpolation into monotonic and continuous 

functions of (r); (r)=[r(R + l)~l ]. This kind of smoothness is rarely found in 

practice and a question arises as to what are the expected consequences of more 

practical assignments for these parameters and others? In this section a few 

layers are removed in the quest to discover the phenomena that may be 

encountered in the induced loss factor ?]s(y) by the insertion of these more 

realistic parametric values. Since the assignment for the parameters that define 

the satellite oscillators and their couplings to the master oscillator can hardly be 

drawn, a more generalized approach is undertaken to investigate the influence of 

introducing variations in these parametric values. In particular, in this section 

two parameters are selected to carry these variations; either individually or in 

unison. In the first, the index (r) of a satellite oscillator is assigned a pseudo- 

statistical value. [Pseudo-statistical is in reference to a sample selected out of an 
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ensemble of random samples.] The index (r) is distributed sequentially and 

fractionally, in the range 1 < r < 27. A pseudo-statistical index is designated 

A(r), where A(r) < A(q); q = (r + l); l<r<(R-l). [cf. Eq. (9b).] In the 

second, the modal overlap parameter (br)is assigned a pseudo-statistical value 

that is distributed in the ranges (2) > br> (0.1) and (3.5) > br > (1), 

respectively. The distribution of A(r) and of (br), withi? = 27, that are 

employed in this section are depicted graphically in Figs. 8a, 8b, and 8c. The 

two-vector {(xrr), (rjrr)}(R), as stated in Eqs. (16) and (18), is typically 

depicted, for the pseudo-statistical values shown in Figs. 8a, 8b, and 8c, in Figs. 

9a, 9b, and 9c, respectively. Figure 9a depicts (xrr) as a function of A(r) and 

Figs. 9b and 9c depict (7]rr), as a function of (F), where A(r) = [A(r)(R+V)~ ] 

and 7= [r(R + l)~1]. [cf. Fig. 2a.] It is observed, in Fig. 9a, that the pseudo- 

statistical variations embody the phenomenon of mode bunching in which 

variations in the modal density of the satellite oscillators drastically vary as a 

function of A(r) [17]. On the other hand, as Figs. 9b and 9c show, the loss 

factor (rjrr), as a function of (r), faithfully follows the variations assigned to 

(br). In Fig. 9b some of the values of (6r)are less than unity, in Fig. 9c all the 

values of (br) are in excess of unity. 

The influence of the variations, described in Fig. 8, on the induced loss 

factor rjs{y), as a function of (y), is exemplified in Figs. 10 and 11. Each figure 
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represents a set of figures. The first figure in each set; e.g., Fig. 10a, depicts the 

base situation in which A(r) = F and br = 1. The. second figure in each set; e.g., 

Fig. 10b, depicts the situation in which Ä(r) is as shown in Fig. 8a and br=l. 

The third figure in each set; e.g., Fig. 10c, depicts the situation in which 

A(r) = r and (Z»r) is as shown in Fig. 8b. The fourth figure in each set; e.g., 

Figure lOd, depicts the situation in which X(r) = r and (br) is as shown in Fig. 

8c. The fifth figure in each set; e.g., Fig. lOe, depicts the combined situation in 

which A(r) and (br) are as shown in Figs. 8a and 8b, respectively. Finally, the 

sixth figure in each set; e.g., Fig. lOf, depicts the combined situation in which 

A(r) and (br) are as shown in Figs. 8a and 8c, respectively. It is recognized 

then that each set of figures presents a complete evolution in the process of 

applying the pseudo-statistical variations depicted in Fig. 8 to the two parameters 

A(r) and (br).  Also, each set selects a specific coupling form and a specific 

coupling strength.    Thus, Fig.  10 pertains to a strong stiffness coupling: 

ac=1.0 [or=0.0.], mc = g =0, and Fig. 11 pertains to a mix of stiffness and of 

gyroscopic coupling of moderate strength: ac = 0.1 [a = O.9.], g = 0.11, mc = 0. 

[cf. Figs. 3e and 7c] 

The first figure of each set; namely, Figs. 10a and 1 la exhibit undulations 

in the levels of the induced loss factor TJS (y), as a function of (y). However, 

these undulations are small and they are completely suppressed as soon 
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as(br) approaches the value of (2). [cf. Fig. 3b.] The variations depicted in Fig. 

8 are clearly discernible in all the subsequent figures in the series entitled Figs. 

10 and 11. True to form, there is but a tinge of edge erosion in Figs. 10a and 

11a, yet in the likes of Fig. 3b stronger sign of erosion has already reared its 

head. From Figs 10a and 11a to Fig. 3b, (b) is changed from unity to merely 

two. To confirm this statement and to provide for convenient and interpretable 

data from which to judge the more erratic data that incorporates the pseudo- 

statistical variations, the first order approximation of rjs(y), given in Eq. (25), is 

superimposed on Figs. 10a and 11a and on all other figures in the series entitled 

Figs. 10 and 11. 

Again, the pseudo-statistical variations are defined by two competing and 

nearly independent factors, i.e., by A(r) and b(r)[=(br)]. In Figs. 9a, 10b and 

lib; it is observed that at a mode bunching (a rich modal density) region the 

influence of the satellite oscillators is more pronounced than at a mode sparsity 

(a poor modal density) region [17]. On the other hand, when the modal overlap 

parameter (br) entertains values that are small compared with unity, the levels as 

a function of (y), tend to fluctuate. The fluctuations are pronounced at and in the 

vicinity of the resonance frequencies of those satellite oscillators to which these 

small values of (£r)are assigned. At and in the vicinity of the resonance 

frequencies of those satellite oscillators to which (br) are assigned values that 

approach and exceed unity, no such fluctuations are present; e.g., see Figs. 10c 
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and lie, and Figs. lOd and lid and contrast them, respectively [18]. When 

variations in both parameters are combined, both characteristics can be identified 

in the levels of the induced loss factor rjs(y); e.g., see Figs. 10 and 11 and 

contrast, in particular, Figs. lOe and lie with Figs. lOf and llf. 
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Appendix A 

The sweeping assumptions rendered in Eq. (15), which leads to Eqs. (9d) 

and (16), culminating in Eq. (18), may be introduced more gradually. The 

purpose for this Appendix is to effect such a gradual introduction. In this manner 

when some of these assumptions are relieved, reevaluation of the induced loss 

factor rjs(y) may be readily instituted. 

From Eqs. (9c) and (12), the design demands that 

(ar + acr) (x°rf = (l+mc,)for r =(1/2), (Al) 

and if (x°) becomes, by design, unity at F=(l/2), the expression reduces to 

(ar +acr) = (1+mcr) for r = (1/2). (A2a) 

From Eq. (12) it is observed with satisfaction that {x°) is, indeed, unity at 

7 = (1/2). On the other hand, from Eqs. (10) and (11) one obtains 

(xr)
2rjr = {brll)[d{xr(x°rf}ldr\,   (xcrf rjcr = (bcr/2) [d{acr{x°r)

2} I dr]; 

rjrr =[2{ccr+acr)(x°r)
2YX {br[d{ar(x?)2}/dr] + bcr[d{acr(x?)2}/dr]},    (A3) 

where again, (r) is allowed to have a continuous connotation as explained in 

Reference 1. In particular, if the spring factors {ar) and (acr) are independent 

of (r), Eq. (A3) simplifies to read 
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?jr = (br 17r){y(R){x°r)
2 ];     r)cr = {bcr 17r)[y{R)(x0

rf ]; 

^rr = ßrVcr,   ctr = a\   acr = a, c (A4) 

where (x°) is extrapolated and interpolated to become a continuous function of 

(r) 

[(d]n(x°r Idr)} = (R +l)"1 [r(/0(*rT ], 

(ßr bcr) = (« + «c)_1 Pr «) + (*«■ «C)L 

(A5) 

(A6) 

br =[(xbr)(R + iy1];   bcr=[{7tbcr){R + \yll (A7) 

and from Eq. (A2a), by design 

(a+ac) = (l+mc). (A2b) 

From Eqs. (10)—(12) and (A2)-(A7) one may cast the designed two-vector in the 

form 

™ \l/2 {(*„.), (^)}(Ä) = {(l + mc)
l,z,(ßr)} . {(x°), (/£)} OR),        (A8) 

{(4), (7° )} (Ä) = {(*?), (^ /^)[Ki?)«)2 ]} (A9) 

where 

ßr = 

zr.  \-\ {\+mc)    [a(br/bcr)+ac]       ;     br * bt cr' (AlOa) 

= ß- 

v-l (l + mc) '[a^/^+orJ;    &r=Z>, &cr = &c      04106) 

;     b = br=bcr, (AlOc) 
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the quantities (fnc), «), y(R) and (bcr) are stated in Eqs. (Id), (12), (13) and 

(A7), respectively, and the superscript (o) in (*„.) and (rjrr) recognizes that 

(x£.) and {rj°r) are restricted to specific impositions, [cf. Eq. (4).] For the sake 

of computational and interpretive advantage the validity of Eqs. (A4) and (A 10c) 

is universally adopted in this paper, [cf. Eq. (15).] Under this imposition, Eqs. 

(A8) and (A4) simplify 

{(xrr),(ilrMR) = {(l + mc)
1/2(<), /7(F)} ;   b=[(xb)(R + \Tll      (All) 

W) = Vr= Vcr = Vrr \    700 = (& '^iX(*)(*??I (A12) 

where (x°) is stated in Eq. (12), and (J3r) becomes equal to unity, [cf. Eqs. 

(18a) and (16).] 
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Fig. 2. (1.) Resonance frequency distribution (xrr) and (2.) Corresponding as- 

signed loss factor (r/rr) for the satellite oscillators as a function of the normalized 

index (F), respectively. (*) 

a.landa.2. WithR = 27 and mc = 0.   [xrr= x°rr, rjrr = TJ^.] 

(*) When regions of curves clearly overlap, the color of the one with the higher 
overlap parameter (b) wins. 
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Fig. 2. (1.) Resonance frequency distribution (x,.,.) and (2.)  Corresponding as- 

signed loss factor (rjrr) for the satellite oscillators as a function of the normalized 

index (r), respectively. (*) 

b.l and b.2. As in a.l and a.2, except that (R) is changed from (27) to (7). 

[Xj.r = Xrr , TJrr = TJrr .J 
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Fig. 2. (1.) Resonance frequency distribution (xrr) and (2.) Corresponding as- 

signed loss factor (rjrr) for the satellite oscillators as a function of the normalized 

index (F), respectively. (*) 

c.l and c.2. As in Fig. 2a, except that (mc) is changed from (0) to (0.75). 
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c.  WithZ> = (10) 

d. A superimposition of b = (0.01), (0.1) and (0.3), and (FOA). (*) 
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f. As in 3. e above except that R = (7) and not (27). 
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Fig. 6.   Induced loss factor Tjs(y), as a function of (y), for a mass control 

coupling form. [R = 27 and (Ms IM) = 0.1.] 

a- ac = g = °[« = 1-15-], fhc = 0.15. [Moderate coupling.] 

b. ac = g = 0[a = 1.03.], fhc = 0.03. [Weak coupling.] 
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Fig. 7.    Induced loss factor rjs(y), as a function of (y), for mixed control 

coupling forms. [R = 27 and (Ms IM) = 0.1.] 

a. ac = mc = 0.75 [a = 1.0.],   f = 0. [Very strong coupling.] 

b. ac = 0.53 [a = 0.47.],   g = 0.54,   mc = 0. [Strong coupling.] 
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Fig. 7.    Induced loss factor rjs(y), as a function of (y), for mixed control 

coupling forms. [R = 27 and (Ms IM) = 0.1.] 

c.  ac = 0.10 [a = 0.90.],   g = 0.11,   mc = 0.  [Moderate coupling.] 

d. ac = 0.02 [a = 0.98.],   g = 0.022,    mc = 0.  [Weak coupling.] 
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